Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cell Rep ; 42(5): 112503, 2023 05 30.
Article in English | MEDLINE | ID: covidwho-2311643

ABSTRACT

Striking antibody evasion by emerging circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants drives the identification of broadly neutralizing antibodies (bNAbs). However, how a bNAb acquires increased neutralization breadth during antibody evolution is still elusive. Here, we identify a clonally related antibody family from a convalescent individual. One of the members, XG005, exhibits potent and broad neutralizing activities against SARS-CoV-2 variants, while the other members show significant reductions in neutralization breadth and potency, especially against the Omicron sublineages. Structural analysis visualizing the XG005-Omicron spike binding interface reveals how crucial somatic mutations endow XG005 with greater neutralization potency and breadth. A single administration of XG005 with extended half-life, reduced antibody-dependent enhancement (ADE) effect, and increased antibody product quality exhibits a high therapeutic efficacy in BA.2- and BA.5-challenged mice. Our results provide a natural example to show the importance of somatic hypermutation during antibody evolution for SARS-CoV-2 neutralization breadth and potency.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Antibodies , Broadly Neutralizing Antibodies , Mutation/genetics , Antibodies, Viral , Antibodies, Neutralizing
2.
J Med Virol ; 95(2): e28440, 2023 02.
Article in English | MEDLINE | ID: covidwho-2268814

ABSTRACT

Emergence of various circulating SARS-CoV-2 variants of concern (VOCs) promotes the identification of pan-sarbecovirus vaccines and broadly neutralizing antibodies (bNAbs). Here, to characterize monoclonal antibodies cross-reactive against both SARS-CoV-1 and SARS-CoV-2 and to search the criterion for bNAbs against all emerging SARS-CoV-2, we isolated several SARS-CoV-1-cross-reactive monoclonal antibodies (mAbs) from a wildtype SARS-CoV-2 convalescent donor. These antibodies showed broad binding capacity and cross-neutralizing potency against various SARS-CoV-2 VOCs, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta), but failed to efficiently neutralize Omicron variant and its sublineages. Structural analysis revealed how Omicron sublineages, but not other VOCs, efficiently evade an antibody family cross-reactive against SARS-CoV-1 through their escape mutations. Further evaluation of a series of SARS-CoV-1/2-cross-reactive bNAbs showed a negative correlation between the neutralizing activities against SARS-CoV-1 and SARS-CoV-2 Omicron variant. Together, these results suggest the necessity of using cross-neutralization against SARS-CoV-1 and SARS-CoV-2 Omicron as criteria for rational design and development of potent pan-sarbecovirus vaccines and bNAbs.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Vaccines , Humans , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Monoclonal , Broadly Neutralizing Antibodies , Antibodies, Viral , Spike Glycoprotein, Coronavirus
3.
J Int AIDS Soc ; 24 Suppl 7: e25829, 2021 11.
Article in English | MEDLINE | ID: covidwho-1525467

ABSTRACT

INTRODUCTION: The last 12 years have seen remarkable progress in the isolation and characterization of at least five different epitope classes of HIV-specific broadly neutralizing antibodies (bnAbs). Detailed analyses of these bnAb lineages, maturation pathways and epitopes have created new opportunities for vaccine development. In addition, interest exists in passive administration of monoclonal antibodies as a viable option for HIV prevention. DISCUSSION: Recently, two antibody-mediated prevention (AMP) trials of a passively administered monoclonal antibody targeting the HIV envelope CD4 binding site, called VRC01, provided proof-of-concept that monoclonal antibody infusion could offer protection against HIV acquisition. While the trials failed to show overall protection against HIV acquisition, sub-analyses revealed that VRC01 infusion provided a 75% prevention efficacy against HIV strains that were susceptible to the antibody. The study also demonstrated that in vitro neutralizing activity, measured by the TZM-bl/pseudovirus assay, was able to predict HIV prevention efficacy in humans. In addition, the AMP trials defined a threshold protective concentration, or neutralization titer, for the VRC01 class of bnAbs, explaining the observed low overall efficacy and serving as a benchmark for the clinical testing of new bnAbs, bnAb cocktails and neutralizing antibody-inducing vaccines. Newer bnAbs that exhibit greater potency and breadth of neutralization in vitro than VRC01 are available for clinical testing. Combinations of best-in-class bnAbs with complementary magnitude, breadth and extent of complete neutralization are predicted to far exceed the prevention efficacy of VRC01. Some engineered bi- and trispecific mAbs exhibit similar desirable neutralizing activity and afford advantages for manufacturing and delivery. Modifications that prolong the serum half-life and improve genital tissue persistence offer additional advantages. CONCLUSIONS: Iterative phase 1 trials are acquiring safety and pharmacokinetic data on dual and triple bnAbs and bi- and trispecific antibodies in preparation for future AMP studies that seek to translate findings from the VRC01 efficacy trials and achieve acceptable levels of overall prevention efficacy.


Subject(s)
HIV Infections , HIV-1 , Antibodies, Monoclonal/therapeutic use , Broadly Neutralizing Antibodies , HIV Antibodies , HIV Infections/drug therapy , HIV Infections/prevention & control , Humans
SELECTION OF CITATIONS
SEARCH DETAIL